evidently.tests
Available tests for TestSuite reports. Tests grouped into modules. For detailed information see module documentation.
Submodules
base_test module
class BaseCheckValueTest(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseConditionsTest
Base class for all tests with checking a value condition
Attributes:
value : Union[float, int]
Methods:
abstract calculate_value_for_test()
Method for getting the checking value. Define it in a child class
check()
get_condition()
abstract get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
groups()
class BaseConditionsTest(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: Test
, ABC
Base class for all tests with a condition
Attributes:
condition : TestValueCondition
class GroupData(id: str, title: str, description: str, sort_index: int = 0, severity: Optional[str] = None)
Bases: object
Attributes:
description : str
id : str
severity : Optional[str] = None
sort_index : int = 0
title : str
class GroupTypeData(id: str, title: str, values: List[evidently.tests.base_test.GroupData] = )
Bases: object
Attributes:
id : str
title : str
values : List[GroupData]
Methods:
add_value(data: GroupData)
class GroupingTypes()
Bases: object
Attributes:
ByClass = GroupTypeData(id='by_class', title='By class', values=[])
ByFeature = GroupTypeData(id='by_feature', title='By feature', values=[GroupData(id='no group', title='Dataset-level tests', description='Some tests cannot be grouped by feature', sort_index=0, severity=None)])
TestGroup = GroupTypeData(id='test_group', title='By test group', values=[GroupData(id='no group', title='Ungrouped', description='Some tests don’t belong to any group under the selected condition', sort_index=0, severity=None), GroupData(id='classification', title='Classification', description='', sort_index=0, severity=None), GroupData(id='data_drift', title='Data Drift', description='', sort_index=0, severity=None), GroupData(id='data_integrity', title='Data Integrity', description='', sort_index=0, severity=None), GroupData(id='data_quality', title='Data Quality', description='', sort_index=0, severity=None), GroupData(id='regression', title='Regression', description='', sort_index=0, severity=None)])
TestType = GroupTypeData(id='test_type', title='By test type', values=[])
class Test()
Bases: object
all fields in test class with type that is subclass of Metric would be used as dependencies of test.
Attributes:
context = None
group : str
name : str
Methods:
abstract check()
get_result()
set_context(context)
class TestResult(name: str, description: str, status: str, groups: Dict[str, str] = )
Bases: object
Attributes:
ERROR = 'ERROR'
FAIL = 'FAIL'
SKIPPED = 'SKIPPED'
SUCCESS = 'SUCCESS'
WARNING = 'WARNING'
description : str
groups : Dict[str, str]
name : str
status : str
Methods:
is_passed()
mark_as_error(description: Optional[str] = None)
mark_as_fail(description: Optional[str] = None)
mark_as_success(description: Optional[str] = None)
mark_as_warning(description: Optional[str] = None)
set_status(status: str, description: Optional[str] = None)
class TestValueCondition(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: object
Class for processing a value conditions - should it be less, greater than, equals and so on.
An object of the class stores specified conditions and can be used for checking a value by them.
Attributes:
eq : Optional[Union[float, int]] = None
gt : Optional[Union[float, int]] = None
gte : Optional[Union[float, int]] = None
is_in : Optional[List[Union[float, int, str, bool]]] = None
lt : Optional[Union[float, int]] = None
lte : Optional[Union[float, int]] = None
not_eq : Optional[Union[float, int]] = None
not_in : Optional[List[Union[float, int, str, bool]]] = None
Methods:
as_dict()
check_value(value: Union[float, int])
has_condition()
Checks if we have a condition in the object and returns True in this case. If we have no conditions - returns False.
generate_column_tests(test_class: Type[Test], columns: Optional[Union[str, list]] = None, parameters: Optional[Dict] = None)
Function for generating tests for columns
classification_performance_tests module
class ByClassClassificationTest(label: str, probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
by_class_metric : ClassificationQualityByClass
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
group : str = 'classification'
metric : ClassificationQualityMetric
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
abstract get_value(result: dict)
class SimpleClassificationTest(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
Attributes:
dummy_metric : ClassificationDummyMetric
group : str = 'classification'
metric : ClassificationQualityMetric
name : str
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
abstract get_value(result: DatasetClassificationQuality)
class SimpleClassificationTestTopK(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTest
, ABC
Attributes:
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
probas_threshold : Optional[float]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
class TestAccuracyScore(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'Accuracy Score'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestAccuracyScoreRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestAccuracyScore)
render_json(obj: TestAccuracyScore)
class TestF1ByClass(label: str, probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: ByClassClassificationTest
Attributes:
name : str = 'F1 Score by Class'
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: dict)
class TestF1ByClassRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1ByClass)
render_json(obj: TestF1ByClass)
class TestF1Score(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'F1 Score'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestF1ScoreRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1Score)
render_json(obj: TestF1Score)
class TestFNR(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'False Negative Rate'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestFNRRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1Score)
render_json(obj: TestFNR)
class TestFPR(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'False Positive Rate'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestFPRRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1Score)
render_json(obj: TestFPR)
class TestLogLoss(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTest
Attributes:
condition : TestValueCondition
dummy_metric : ClassificationDummyMetric
metric : ClassificationQualityMetric
name : str = 'Logarithmic Loss'
value : Union[float, int]
Methods:
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestLogLossRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestLogLoss)
render_json(obj: TestLogLoss)
class TestPrecisionByClass(label: str, probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: ByClassClassificationTest
Attributes:
name : str = 'Precision Score by Class'
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: dict)
class TestPrecisionByClassRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestPrecisionByClass)
render_json(obj: TestPrecisionByClass)
class TestPrecisionScore(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'Precision Score'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestPrecisionScoreRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestPrecisionScore)
render_json(obj: TestPrecisionScore)
class TestRecallByClass(label: str, probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: ByClassClassificationTest
Attributes:
name : str = 'Recall Score by Class'
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: dict)
class TestRecallByClassRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestRecallByClass)
render_json(obj: TestRecallByClass)
class TestRecallScore(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'Recall Score'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestRecallScoreRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestRecallScore)
render_json(obj: TestRecallScore)
class TestRocAuc(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTest
Attributes:
name : str = 'ROC AUC Score'
roc_curve : ClassificationRocCurve
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestRocAucRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestRocAuc)
render_json(obj: TestRocAuc)
class TestTNR(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'True Negative Rate'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestTNRRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1Score)
render_json(obj: TestTNR)
class TestTPR(probas_threshold: Optional[float] = None, k: Optional[Union[float, int]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: SimpleClassificationTestTopK
Attributes:
condition : TestValueCondition
conf_matrix : ClassificationConfusionMatrix
dummy_metric : ClassificationDummyMetric
k : Optional[Union[float, int]]
metric : ClassificationQualityMetric
name : str = 'True Positive Rate'
probas_threshold : Optional[float]
value : Union[float, int]
Methods:
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
get_value(result: DatasetClassificationQuality)
class TestTPRRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestF1Score)
render_json(obj: TestTPR)
data_drift_tests module
class BaseDataDriftMetricsTest(columns: Optional[List[str]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
group : str = 'data_drift'
metric : DataDriftTable
Methods:
check()
class TestAllFeaturesValueDrift(columns: Optional[List[str]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
Bases: BaseGenerator
Create value drift tests for numeric and category features
Attributes:
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]
cat_stattest_threshold : Optional[float]
columns : Optional[List[str]]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]
num_stattest_threshold : Optional[float]
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]]
per_column_stattest_threshold : Optional[Dict[str, float]]
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]
stattest_threshold : Optional[float]
Methods:
generate(columns_info: DatasetColumns)
class TestColumnDrift(column_name: str, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, stattest_threshold: Optional[float] = None)
Bases: Test
Attributes:
column_name : str
group : str = 'data_drift'
metric : ColumnDriftMetric
name : str = 'Drift per Column'
Methods:
check()
class TestColumnDriftRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnDrift)
render_json(obj: TestColumnDrift)
class TestCustomFeaturesValueDrift(features: List[str], stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
Bases: BaseGenerator
Create value drift tests for specified features
Attributes:
cat_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None
cat_stattest_threshold : Optional[float] = None
features : List[str]
num_stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None
num_stattest_threshold : Optional[float] = None
per_column_stattest : Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None
per_column_stattest_threshold : Optional[Dict[str, float]] = None
stattest : Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None
stattest_threshold : Optional[float] = None
Methods:
generate(columns_info: DatasetColumns)
class TestDataDriftResult(name: str, description: str, status: str, groups: Dict[str, str] = , features: Dict[str, Tuple[str, float, float]] = )
Bases: TestResult
Attributes:
features : Dict[str, Tuple[str, float, float]]
class TestNumberOfDriftedColumns(columns: Optional[List[str]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
Bases: BaseDataDriftMetricsTest
Attributes:
condition : TestValueCondition
metric : DataDriftTable
name : str = 'Number of Drifted Features'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfDriftedColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfDriftedColumns)
render_json(obj: TestNumberOfDriftedColumns)
class TestShareOfDriftedColumns(columns: Optional[List[str]] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None, stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, cat_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, num_stattest: Optional[Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]] = None, per_column_stattest: Optional[Dict[str, Union[str, Callable[[Series, Series, str, float], Tuple[float, bool]], StatTest]]] = None, stattest_threshold: Optional[float] = None, cat_stattest_threshold: Optional[float] = None, num_stattest_threshold: Optional[float] = None, per_column_stattest_threshold: Optional[Dict[str, float]] = None)
Bases: BaseDataDriftMetricsTest
Attributes:
condition : TestValueCondition
metric : DataDriftTable
name : str = 'Share of Drifted Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfDriftedColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestShareOfDriftedColumns)
render_json(obj: TestShareOfDriftedColumns)
data_integrity_tests module
class BaseIntegrityByColumnsConditionTest(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
column_name : str
data_integrity_metric : ColumnSummaryMetric
group : str = 'data_integrity'
Methods:
groups()
class BaseIntegrityColumnMissingValuesTest(column_name: str, missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
column_name : str
group : str = 'data_integrity'
metric : DatasetMissingValuesMetric
class BaseIntegrityMissingValuesValuesTest(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
group : str = 'data_integrity'
metric : DatasetMissingValuesMetric
class BaseIntegrityOneColumnTest(column_name: str)
Bases: Test
, ABC
Attributes:
column_name : str
group : str = 'data_integrity'
metric : ColumnSummaryMetric
Methods:
groups()
class BaseIntegrityValueTest(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
group : str = 'data_integrity'
metric : DatasetSummaryMetric
class BaseTestMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Common class for tests of missing values. Some tests have the same details visualizations.
Attributes:
MISSING_VALUES_NAMING_MAPPING = {None: 'Pandas nulls (None, NAN, etc.)', '': '"" (empty string)', inf: 'Numpy "inf" value', -inf: 'Numpy "-inf" value'}
color_options : ColorOptions
Methods:
get_table_with_missing_values_and_percents_by_column(info: TestHtmlInfo, metric_result: DatasetMissingValuesMetricResult, name: str)
Get a table with missing values number and percents
get_table_with_number_of_missing_values_by_one_missing_value(info: TestHtmlInfo, current_missing_values: dict, reference_missing_values: Optional[dict], name: str)
class TestAllColumnsShareOfMissingValues(columns: Optional[List[str]] = None)
Bases: BaseGenerator
Attributes:
columns : Optional[List[str]]
Methods:
generate(columns_info: DatasetColumns)
class TestColumnAllConstantValues(column_name: str)
Bases: BaseIntegrityOneColumnTest
Test that there is only one unique value in a column
Attributes:
metric : ColumnSummaryMetric
name : str = 'All Constant Values in a Column'
Methods:
check()
class TestColumnAllConstantValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnAllConstantValues)
class TestColumnAllUniqueValues(column_name: str)
Bases: BaseIntegrityOneColumnTest
Test that there is only uniques values in a column
Attributes:
column_name : str
metric : ColumnSummaryMetric
name : str = 'All Unique Values in a Column'
Methods:
check()
class TestColumnAllUniqueValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnAllUniqueValues)
class TestColumnNumberOfDifferentMissingValues(column_name: str, missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityColumnMissingValuesTest
Check a number of differently encoded missing values in one column.
Attributes:
column_name : str
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'Different Types of Missing Values in a Column'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnNumberOfDifferentMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnNumberOfDifferentMissingValues)
Get a table with a missing value and number of the value in the dataset
render_json(obj: TestColumnNumberOfDifferentMissingValues)
class TestColumnNumberOfMissingValues(column_name: str, missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityColumnMissingValuesTest
Check a number of missing values in one column.
Attributes:
column_name : str
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Number of Missing Values in a Column'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnNumberOfMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestColumnNumberOfMissingValues)
class TestColumnRegExp(column_name: str, reg_exp: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
column_name : str
group : str = 'data_integrity'
metric : ColumnRegExpMetric
name : str = 'RegExp Match'
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
groups()
class TestColumnRegExpRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnRegExp)
class TestColumnShareOfMissingValues(column_name: str, missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityColumnMissingValuesTest
Check a share of missing values in one column.
Attributes:
column_name : str
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Share of Missing Values in a Column'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnShareOfMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestColumnShareOfMissingValues)
class TestColumnsType(columns_type: Optional[dict] = None)
Bases: Test
This test compares columns type against the specified ones or a reference dataframe
class Result name: str, description: str, status: str, groups: Dict[str, str] = , columns_types: Dict[str, Tuple[str, str]] =
Bases: TestResult
Attributes:
columns_types : Dict[str, Tuple[str, str]]
check()
columns_type : Optional[dict]
group : str = 'data_integrity'
metric : DatasetSummaryMetric
name : str = 'Column Types'
class TestColumnsTypeRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnsType)
render_json(obj: TestColumnsType)
class TestNumberOfColumns(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
Number of all columns in the data, including utility columns (id/index, datetime, target, predictions)
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfColumns)
render_json(obj: TestNumberOfColumns)
class TestNumberOfColumnsWithMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a number of columns with a missing value.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Number of Columns With Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfColumnsWithMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfMissingValues)
render_json(obj: TestNumberOfColumnsWithMissingValues)
class TestNumberOfConstantColumns(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
Number of columns contained only one unique value
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Constant Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfConstantColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfConstantColumns)
render_json(obj: TestNumberOfConstantColumns)
class TestNumberOfDifferentMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a number of different encoded missing values.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'Different Types of Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfDifferentMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfDifferentMissingValues)
Get a table with a missing value and number of the value in the dataset
render_json(obj: TestNumberOfDifferentMissingValues)
class TestNumberOfDuplicatedColumns(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
How many columns have duplicates in the dataset
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Duplicate Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfDuplicatedColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestNumberOfDuplicatedColumns)
class TestNumberOfDuplicatedRows(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
How many rows have duplicates in the dataset
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Duplicate Rows'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfDuplicatedRowsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestNumberOfDuplicatedRows)
class TestNumberOfEmptyColumns(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
Number of columns contained all NAN values
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Empty Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfEmptyColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfEmptyColumns)
class TestNumberOfEmptyRows(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
Number of rows contained all NAN values
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Empty Rows'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a number of missing values.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Number of Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfMissingValues)
render_json(obj: TestNumberOfMissingValues)
class TestNumberOfRows(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityValueTest
Number of rows in the data
Attributes:
condition : TestValueCondition
metric : DatasetSummaryMetric
name : str = 'Number of Rows'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfRowsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestNumberOfRows)
class TestNumberOfRowsWithMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a number of rows with a missing value.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Number Of Rows With Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfRowsWithMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestNumberOfRowsWithMissingValues)
class TestShareOfColumnsWithMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a share of columns with a missing value.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Share of Columns With Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfColumnsWithMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfMissingValues)
render_json(obj: TestShareOfColumnsWithMissingValues)
class TestShareOfMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a share of missing values.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'Share of Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfMissingValues)
render_json(obj: TestShareOfMissingValues)
class TestShareOfRowsWithMissingValues(missing_values: Optional[list] = None, replace: bool = True, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseIntegrityMissingValuesValuesTest
Check a share of rows with a missing value.
Attributes:
condition : TestValueCondition
metric : DatasetMissingValuesMetric
name : str = 'The Share of Rows With Missing Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfRowsWithMissingValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: BaseTestMissingValuesRenderer
Attributes:
color_options : ColorOptions
Methods:
render_json(obj: TestShareOfRowsWithMissingValues)
data_quality_tests module
class BaseDataQualityCorrelationsMetricsValueTest(method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
group : str = 'data_quality'
method : str
metric : DatasetCorrelationsMetric
class BaseDataQualityMetricsValueTest(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
group : str = 'data_quality'
metric : ColumnSummaryMetric
class BaseDataQualityValueListMetricsTest(column_name: str, values: Optional[list] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
column_name : str
group : str = 'data_quality'
metric : ColumnValueListMetric
values : Optional[list]
Methods:
groups()
class BaseDataQualityValueRangeMetricsTest(column_name: str, left: Optional[float] = None, right: Optional[float] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
column : str
group : str = 'data_quality'
left : Optional[float]
metric : ColumnValueRangeMetric
right : Optional[float]
Methods:
groups()
class BaseFeatureDataQualityMetricsTest(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityMetricsValueTest
, ABC
Attributes:
column_name : str
Methods:
check()
groups()
class TestAllColumnsMostCommonValueShare(columns: Optional[List[str]] = None)
Bases: BaseGenerator
Creates most common value share tests for each column in the dataset
Attributes:
columns : Optional[List[str]]
Methods:
generate(columns_info: DatasetColumns)
class TestCatColumnsOutOfListValues(columns: Optional[List[str]] = None)
Bases: BaseGenerator
Create share of out of list values tests for category columns
Attributes:
columns : Optional[List[str]]
Methods:
generate(columns_info: DatasetColumns)
class TestColumnQuantile(column_name: str, quantile: float, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
Attributes:
column_name : str
group : str = 'data_quality'
metric : ColumnQuantileMetric
name : str = 'Quantile Value'
quantile : float
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
groups()
class TestColumnQuantileRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnQuantile)
class TestColumnValueMax(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Max Value'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnValueMaxRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnValueMax)
class TestColumnValueMean(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Mean Value'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnValueMeanRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnValueMean)
class TestColumnValueMedian(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Median Value'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnValueMedianRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnValueMedian)
class TestColumnValueMin(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Min Value'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnValueMinRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnValueMin)
class TestColumnValueStd(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Standard Deviation (SD)'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestColumnValueStdRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestColumnValueStd)
class TestConflictPrediction()
Bases: Test
Attributes:
group : str = 'data_quality'
metric : ConflictPredictionMetric
name : str = 'Test number of conflicts in prediction'
Methods:
check()
class TestConflictTarget()
Bases: Test
Attributes:
group : str = 'data_quality'
metric : ConflictTargetMetric
name : str = 'Test number of conflicts in target'
Methods:
check()
class TestCorrelationChanges(corr_diff: float = 0.25, method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityCorrelationsMetricsValueTest
Attributes:
corr_diff : float
group : str = 'data_quality'
metric : DatasetCorrelationsMetric
name : str = 'Change in Correlation'
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestCorrelationChangesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestCorrelationChanges)
class TestHighlyCorrelatedColumns(method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityCorrelationsMetricsValueTest
Attributes:
condition : TestValueCondition
method : str
metric : DatasetCorrelationsMetric
name : str = 'Highly Correlated Columns'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestHighlyCorrelatedColumnsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestHighlyCorrelatedColumns)
render_json(obj: TestHighlyCorrelatedColumns)
class TestMeanInNSigmas(column_name: str, n_sigmas: int = 2)
Bases: Test
Attributes:
column_name : str
group : str = 'data_quality'
metric : ColumnSummaryMetric
n_sigmas : int
name : str = 'Mean Value Stability'
Methods:
check()
class TestMeanInNSigmasRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestMeanInNSigmas)
render_json(obj: TestMeanInNSigmas)
class TestMostCommonValueShare(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Share of the Most Common Value'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestMostCommonValueShareRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestMostCommonValueShare)
render_json(obj: TestMostCommonValueShare)
class TestNumColumnsMeanInNSigmas(columns: Optional[List[str]] = None)
Bases: BaseGenerator
Create tests of mean for all numeric columns
Attributes:
columns : Optional[List[str]]
Methods:
generate(columns_info: DatasetColumns)
class TestNumColumnsOutOfRangeValues(columns: Optional[List[str]] = None)
Bases: BaseGenerator
Creates share of out of range values tests for all numeric columns
Attributes:
columns : Optional[List[str]]
Methods:
generate(columns_info: DatasetColumns)
class TestNumberOfOutListValues(column_name: str, values: Optional[list] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityValueListMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnValueListMetric
name : str = 'Number Out-of-List Values'
value : Union[float, int]
values : Optional[list]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfOutListValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfOutListValues)
class TestNumberOfOutRangeValues(column_name: str, left: Optional[float] = None, right: Optional[float] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityValueRangeMetricsTest
Attributes:
column : str
condition : TestValueCondition
left : Optional[float]
metric : ColumnValueRangeMetric
name : str = 'Number of Out-of-Range Values '
right : Optional[float]
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfOutRangeValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfOutRangeValues)
class TestNumberOfUniqueValues(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Number of Unique Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestNumberOfUniqueValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestNumberOfUniqueValues)
class TestPredictionFeaturesCorrelations(method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityCorrelationsMetricsValueTest
Attributes:
condition : TestValueCondition
method : str
metric : DatasetCorrelationsMetric
name : str = 'Correlation between Prediction and Features'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestPredictionFeaturesCorrelationsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestTargetFeaturesCorrelations)
render_json(obj: TestPredictionFeaturesCorrelations)
class TestShareOfOutListValues(column_name: str, values: Optional[list] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityValueListMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnValueListMetric
name : str = 'Share of Out-of-List Values'
value : Union[float, int]
values : Optional[list]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfOutListValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestShareOfOutListValues)
render_json(obj: TestShareOfOutListValues)
class TestShareOfOutRangeValues(column_name: str, left: Optional[float] = None, right: Optional[float] = None, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityValueRangeMetricsTest
Attributes:
column : str
condition : TestValueCondition
left : Optional[float]
metric : ColumnValueRangeMetric
name : str = 'Share of Out-of-Range Values'
right : Optional[float]
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestShareOfOutRangeValuesRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestShareOfOutRangeValues)
render_json(obj: TestShareOfOutRangeValues)
class TestTargetFeaturesCorrelations(method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityCorrelationsMetricsValueTest
Attributes:
condition : TestValueCondition
method : str
metric : DatasetCorrelationsMetric
name : str = 'Correlation between Target and Features'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestTargetFeaturesCorrelationsRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestTargetFeaturesCorrelations)
render_json(obj: TestTargetFeaturesCorrelations)
class TestTargetPredictionCorrelation(method: str = 'pearson', eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseDataQualityCorrelationsMetricsValueTest
Attributes:
condition : TestValueCondition
method : str
metric : DatasetCorrelationsMetric
name : str = 'Correlation between Target and Prediction'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestUniqueValuesShare(column_name: str, eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseFeatureDataQualityMetricsTest
Attributes:
column_name : str
condition : TestValueCondition
metric : ColumnSummaryMetric
name : str = 'Share of Unique Values'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestUniqueValuesShareRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestUniqueValuesShare)
class TestValueList(column_name: str, values: Optional[list] = None)
Bases: Test
Attributes:
column_name : str
group : str = 'data_quality'
metric : ColumnValueListMetric
name : str = 'Out-of-List Values'
values : Optional[list]
Methods:
check()
class TestValueListRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueList)
render_json(obj: TestValueList)
class TestValueRange(column_name: str, left: Optional[float] = None, right: Optional[float] = None)
Bases: Test
Attributes:
column : str
group : str = 'data_quality'
left : Optional[float]
metric : ColumnValueRangeMetric
name : str = 'Value Range'
right : Optional[float]
Methods:
check()
class TestValueRangeRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueRange)
regression_performance_tests module
class BaseRegressionPerformanceMetricsTest(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseCheckValueTest
, ABC
Attributes:
dummy_metric : RegressionDummyMetric
group : str = 'regression'
metric : RegressionQualityMetric
class TestValueAbsMaxError(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'Max Absolute Error'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueAbsMaxErrorRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueAbsMaxError)
render_json(obj: TestValueAbsMaxError)
class TestValueMAE(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'Mean Absolute Error (MAE)'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueMAERenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueMAE)
render_json(obj: TestValueMAE)
class TestValueMAPE(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'Mean Absolute Percentage Error (MAPE)'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueMAPERenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueMAPE)
render_json(obj: TestValueMAPE)
class TestValueMeanError(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'Mean Error (ME)'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueMeanErrorRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueMeanError)
render_json(obj: TestValueMeanError)
class TestValueR2Score(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'R2 Score'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueR2ScoreRenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueR2Score)
render_json(obj: TestValueAbsMaxError)
class TestValueRMSE(eq: Optional[Union[float, int]] = None, gt: Optional[Union[float, int]] = None, gte: Optional[Union[float, int]] = None, is_in: Optional[List[Union[float, int, str, bool]]] = None, lt: Optional[Union[float, int]] = None, lte: Optional[Union[float, int]] = None, not_eq: Optional[Union[float, int]] = None, not_in: Optional[List[Union[float, int, str, bool]]] = None)
Bases: BaseRegressionPerformanceMetricsTest
Attributes:
condition : TestValueCondition
dummy_metric : RegressionDummyMetric
metric : RegressionQualityMetric
name : str = 'Root Mean Square Error (RMSE)'
value : Union[float, int]
Methods:
calculate_value_for_test()
Method for getting the checking value. Define it in a child class
get_condition()
get_description(value: Union[float, int])
Method for getting a description that we can use. The description can use the checked value. Define it in a child class
class TestValueRMSERenderer(color_options: Optional[ColorOptions] = None)
Bases: TestRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: TestValueRMSE)
render_json(obj: TestValueRMSE)
utils module
approx(value, relative=None, absolute=None)
Get approximate value for checking a value is equal to other within some tolerance
dataframes_to_table(current: DataFrame, reference: Optional[DataFrame], columns: List[str], table_id: str, sort_by: str = 'curr', na_position: str = 'first', asc: bool = False)
plot_boxes(*, curr_for_plots: dict, ref_for_plots: Optional[dict], color_options: ColorOptions)
plot_check(fig, condition, color_options: ColorOptions)
plot_conf_mtrx(curr_mtrx, ref_mtrx)
plot_correlations(current_correlations, reference_correlations)
plot_dicts_to_table(dict_curr: dict, dict_ref: Optional[dict], columns: list, id_prfx: str, sort_by: str = 'curr', asc: bool = False)
plot_metric_value(fig, metric_val: float, metric_name: str)
plot_rates(*, curr_rate_plots_data: dict, ref_rate_plots_data: Optional[dict] = None, color_options: ColorOptions)
plot_roc_auc(*, curr_roc_curve: dict, ref_roc_curve: Optional[dict], color_options: ColorOptions)
plot_value_counts_tables(feature_name, values, curr_df, ref_df, id_prfx)
plot_value_counts_tables_ref_curr(feature_name, curr_df, ref_df, id_prfx)
regression_perf_plot(*, val_for_plot: Dict[str, Series], hist_for_plot: Dict[str, Series], name: str, curr_metric: float, ref_metric: Optional[float] = None, is_ref_data: bool = False, color_options: ColorOptions)
Last updated