evidently.pipeline
Submodules
column_mapping module
class ColumnMapping(target: Optional[str] = 'target', prediction: Union[str, int, Sequence[str], Sequence[int], NoneType] = 'prediction', datetime: Optional[str] = 'datetime', id: Optional[str] = None, numerical_features: Optional[List[str]] = None, categorical_features: Optional[List[str]] = None, datetime_features: Optional[List[str]] = None, target_names: Optional[List[str]] = None, task: Optional[str] = None, pos_label: Union[str, int, NoneType] = 1)
Bases: object
Attributes:
categorical_features : Optional[List[str]] = None
datetime : Optional[str] = 'datetime'
datetime_features : Optional[List[str]] = None
id : Optional[str] = None
numerical_features : Optional[List[str]] = None
pos_label : Optional[Union[str, int]] = 1
prediction : Optional[Union[str, int, Sequence[str], Sequence[int]]] = 'prediction'
target : Optional[str] = 'target'
target_names : Optional[List[str]] = None
task : Optional[str] = None
Methods:
is_classification_task()
is_regression_task()
class TaskType()
Bases: object
Attributes:
CLASSIFICATION_TASK : str = 'classification'
REGRESSION_TASK : str = 'regression'
pipeline module
class Pipeline(stages: Sequence[PipelineStage], options: list)
Bases: object
Attributes:
analyzers_results : Dict[Type[Analyzer], object]
options_provider : OptionsProvider
stages : Sequence[PipelineStage]
Methods:
execute(reference_data: DataFrame, current_data: Optional[DataFrame] = None, column_mapping: Optional[ColumnMapping] = None)
get_analyzers()
stage module
class PipelineStage()
Bases: object
Attributes:
options_provider : OptionsProvider
Methods:
add_analyzer(analyzer_type: Type[Analyzer])
analyzers()
abstract calculate(reference_data: DataFrame, current_data: DataFrame, column_mapping: ColumnMapping, analyzers_results: Dict[Type[Analyzer], Any])
Last updated