evidently.metrics.regression_performance
Submodules
abs_perc_error_in_time module
class RegressionAbsPercentageErrorPlot()
Bases: Metric
[RegressionAbsPercentageErrorPlotResults
]
Methods:
calculate(data: InputData)
class RegressionAbsPercentageErrorPlotRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionAbsPercentageErrorPlot)
render_json(obj: RegressionAbsPercentageErrorPlot)
class RegressionAbsPercentageErrorPlotResults(current_scatter: Dict[str, pandas.core.series.Series], reference_scatter: Optional[Dict[str, pandas.core.series.Series]], x_name: str)
Bases: object
Attributes:
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
error_bias_table module
class RegressionErrorBiasTable(columns: Optional[List[str]] = None, top_error: Optional[float] = None)
Bases: Metric
[RegressionErrorBiasTableResults
]
Attributes:
TOP_ERROR_DEFAULT = 0.05
TOP_ERROR_MAX = 0.5
TOP_ERROR_MIN = 0
columns : Optional[List[str]]
top_error : float
Methods:
calculate(data: InputData)
class RegressionErrorBiasTableRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionErrorBiasTable)
render_json(obj: RegressionErrorBiasTable)
class RegressionErrorBiasTableResults(top_error: float, current_plot_data: pandas.core.frame.DataFrame, reference_plot_data: Optional[pandas.core.frame.DataFrame], target_name: str, prediction_name: str, num_feature_names: List[str], cat_feature_names: List[str], error_bias: Optional[dict] = None, columns: Optional[List[str]] = None)
Bases: object
Attributes:
cat_feature_names : List[str]
columns : Optional[List[str]] = None
current_plot_data : DataFrame
error_bias : Optional[dict] = None
num_feature_names : List[str]
prediction_name : str
reference_plot_data : Optional[DataFrame]
target_name : str
top_error : float
error_distribution module
class RegressionErrorDistribution()
Bases: Metric
[RegressionErrorDistributionResults
]
Methods:
calculate(data: InputData)
class RegressionErrorDistributionRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionErrorDistribution)
render_json(obj: RegressionErrorDistribution)
class RegressionErrorDistributionResults(current_bins: pandas.core.frame.DataFrame, reference_bins: Optional[pandas.core.frame.DataFrame])
Bases: object
Attributes:
current_bins : DataFrame
reference_bins : Optional[DataFrame]
error_in_time module
class RegressionErrorPlot()
Bases: Metric
[RegressionErrorPlotResults
]
Methods:
calculate(data: InputData)
class RegressionErrorPlotRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionErrorPlot)
render_json(obj: RegressionErrorPlot)
class RegressionErrorPlotResults(current_scatter: Dict[str, pandas.core.series.Series], reference_scatter: Optional[Dict[str, pandas.core.series.Series]], x_name: str)
Bases: object
Attributes:
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
error_normality module
class RegressionErrorNormality()
Bases: Metric
[RegressionErrorNormalityResults
]
Methods:
calculate(data: InputData)
class RegressionErrorNormalityRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionErrorNormality)
render_json(obj: RegressionErrorNormality)
class RegressionErrorNormalityResults(current_error: pandas.core.series.Series, reference_error: Optional[pandas.core.series.Series])
Bases: object
Attributes:
current_error : Series
reference_error : Optional[Series]
predicted_and_actual_in_time module
class RegressionPredictedVsActualPlot()
Bases: Metric
[RegressionPredictedVsActualPlotResults
]
Methods:
calculate(data: InputData)
class RegressionPredictedVsActualPlotRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionPredictedVsActualPlot)
render_json(obj: RegressionPredictedVsActualPlot)
class RegressionPredictedVsActualPlotResults(current_scatter: Dict[str, pandas.core.series.Series], reference_scatter: Optional[Dict[str, pandas.core.series.Series]], x_name: str)
Bases: object
Attributes:
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
x_name : str
predicted_vs_actual module
class RegressionPredictedVsActualScatter()
Bases: Metric
[RegressionPredictedVsActualScatterResults
]
Methods:
calculate(data: InputData)
class RegressionPredictedVsActualScatterRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionPredictedVsActualScatter)
render_json(obj: RegressionPredictedVsActualScatter)
class RegressionPredictedVsActualScatterResults(current_scatter: Dict[str, pandas.core.series.Series], reference_scatter: Optional[Dict[str, pandas.core.series.Series]])
Bases: object
Attributes:
current_scatter : Dict[str, Series]
reference_scatter : Optional[Dict[str, Series]]
regression_dummy_metric module
class RegressionDummyMetric()
Bases: Metric
[RegressionDummyMetricResults
]
Attributes:
quality_metric : RegressionQualityMetric
Methods:
calculate(data: InputData)
class RegressionDummyMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionDummyMetric)
render_json(obj: RegressionDummyMetric)
class RegressionDummyMetricResults(rmse_default: float, mean_abs_error_default: float, mean_abs_perc_error_default: float, abs_error_max_default: float, mean_abs_error_by_ref: Optional[float] = None, mean_abs_error: Optional[float] = None, mean_abs_perc_error_by_ref: Optional[float] = None, mean_abs_perc_error: Optional[float] = None, rmse_by_ref: Optional[float] = None, rmse: Optional[float] = None, abs_error_max_by_ref: Optional[float] = None, abs_error_max: Optional[float] = None)
Bases: object
Attributes:
abs_error_max : Optional[float] = None
abs_error_max_by_ref : Optional[float] = None
abs_error_max_default : float
mean_abs_error : Optional[float] = None
mean_abs_error_by_ref : Optional[float] = None
mean_abs_error_default : float
mean_abs_perc_error : Optional[float] = None
mean_abs_perc_error_by_ref : Optional[float] = None
mean_abs_perc_error_default : float
rmse : Optional[float] = None
rmse_by_ref : Optional[float] = None
rmse_default : float
regression_performance_metrics module
class RegressionPerformanceMetrics()
Bases: Metric
[RegressionPerformanceMetricsResults
]
Methods:
calculate(data: InputData)
get_parameters()
class RegressionPerformanceMetricsRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionPerformanceMetrics)
render_json(obj: RegressionPerformanceMetrics)
class RegressionPerformanceMetricsResults(columns: DatasetColumns, r2_score: float, rmse: float, rmse_default: float, mean_error: float, me_default_sigma: float, me_hist_for_plot: Dict[str, Union[pandas.core.series.Series, pandas.core.frame.DataFrame]], mean_abs_error: float, mean_abs_error_default: float, mean_abs_perc_error: float, mean_abs_perc_error_default: float, abs_error_max: float, abs_error_max_default: float, error_std: float, abs_error_std: float, abs_perc_error_std: float, error_normality: dict, underperformance: dict, hist_for_plot: Dict[str, pandas.core.series.Series], vals_for_plots: Dict[str, Dict[str, pandas.core.series.Series]], error_bias: Optional[dict] = None, mean_error_ref: Optional[float] = None, mean_abs_error_ref: Optional[float] = None, mean_abs_perc_error_ref: Optional[float] = None, rmse_ref: Optional[float] = None, r2_score_ref: Optional[float] = None, abs_error_max_ref: Optional[float] = None, underperformance_ref: Optional[dict] = None)
Bases: object
Attributes:
abs_error_max : float
abs_error_max_default : float
abs_error_max_ref : Optional[float] = None
abs_error_std : float
abs_perc_error_std : float
columns : DatasetColumns
error_bias : Optional[dict] = None
error_normality : dict
error_std : float
hist_for_plot : Dict[str, Series]
me_default_sigma : float
me_hist_for_plot : Dict[str, Union[Series, DataFrame]]
mean_abs_error : float
mean_abs_error_default : float
mean_abs_error_ref : Optional[float] = None
mean_abs_perc_error : float
mean_abs_perc_error_default : float
mean_abs_perc_error_ref : Optional[float] = None
mean_error : float
mean_error_ref : Optional[float] = None
r2_score : float
r2_score_ref : Optional[float] = None
rmse : float
rmse_default : float
rmse_ref : Optional[float] = None
underperformance : dict
underperformance_ref : Optional[dict] = None
vals_for_plots : Dict[str, Dict[str, Series]]
regression_quality module
class RegressionQualityMetric()
Bases: Metric
[RegressionQualityMetricResults
]
Methods:
calculate(data: InputData)
class RegressionQualityMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionQualityMetric)
render_json(obj: RegressionQualityMetric)
class RegressionQualityMetricResults(columns: DatasetColumns, r2_score: float, rmse: float, rmse_default: float, mean_error: float, me_default_sigma: float, me_hist_for_plot: Dict[str, pandas.core.series.Series], mean_abs_error: float, mean_abs_error_default: float, mean_abs_perc_error: float, mean_abs_perc_error_default: float, abs_error_max: float, abs_error_max_default: float, error_std: float, abs_error_std: float, abs_perc_error_std: float, error_normality: dict, underperformance: dict, hist_for_plot: Dict[str, pandas.core.series.Series], vals_for_plots: Dict[str, Dict[str, pandas.core.series.Series]], error_bias: Optional[dict] = None, mean_error_ref: Optional[float] = None, mean_abs_error_ref: Optional[float] = None, mean_abs_perc_error_ref: Optional[float] = None, rmse_ref: Optional[float] = None, r2_score_ref: Optional[float] = None, abs_error_max_ref: Optional[float] = None, underperformance_ref: Optional[dict] = None, error_std_ref: Optional[float] = None, abs_error_std_ref: Optional[float] = None, abs_perc_error_std_ref: Optional[float] = None)
Bases: object
Attributes:
abs_error_max : float
abs_error_max_default : float
abs_error_max_ref : Optional[float] = None
abs_error_std : float
abs_error_std_ref : Optional[float] = None
abs_perc_error_std : float
abs_perc_error_std_ref : Optional[float] = None
columns : DatasetColumns
error_bias : Optional[dict] = None
error_normality : dict
error_std : float
error_std_ref : Optional[float] = None
hist_for_plot : Dict[str, Series]
me_default_sigma : float
me_hist_for_plot : Dict[str, Series]
mean_abs_error : float
mean_abs_error_default : float
mean_abs_error_ref : Optional[float] = None
mean_abs_perc_error : float
mean_abs_perc_error_default : float
mean_abs_perc_error_ref : Optional[float] = None
mean_error : float
mean_error_ref : Optional[float] = None
r2_score : float
r2_score_ref : Optional[float] = None
rmse : float
rmse_default : float
rmse_ref : Optional[float] = None
underperformance : dict
underperformance_ref : Optional[dict] = None
vals_for_plots : Dict[str, Dict[str, Series]]
top_error module
class RegressionTopErrorMetric()
Bases: Metric
[RegressionTopErrorMetricResults
]
Methods:
calculate(data: InputData)
class RegressionTopErrorMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: RegressionTopErrorMetric)
render_json(obj: RegressionTopErrorMetric)
class RegressionTopErrorMetricResults(curr_mean_err_per_group: Dict[str, Dict[str, float]], curr_scatter: Dict[str, Dict[str, pandas.core.series.Series]], ref_mean_err_per_group: Optional[Dict[str, Dict[str, float]]], ref_scatter: Optional[Dict[str, Dict[str, pandas.core.series.Series]]])
Bases: object
Attributes:
curr_mean_err_per_group : Dict[str, Dict[str, float]]
curr_scatter : Dict[str, Dict[str, Series]]
ref_mean_err_per_group : Optional[Dict[str, Dict[str, float]]]
ref_scatter : Optional[Dict[str, Dict[str, Series]]]
Last updated