evidently.metrics.data_quality
Submodules
column_correlations_metric module
class ColumnCorrelationsMetric(column_name: str)
Bases: Metric
[ColumnCorrelationsMetricResult
]
Calculates correlations between the selected column and all the other columns. In the current and reference (if presented) datasets
Attributes:
column_name : str
Methods:
calculate(data: InputData)
class ColumnCorrelationsMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: ColumnCorrelationsMetric)
render_json(obj: ColumnCorrelationsMetric)
class ColumnCorrelationsMetricResult(column_name: str, current: Dict[str, ColumnCorrelations], reference: Optional[Dict[str, ColumnCorrelations]] = None)
Bases: object
Attributes:
column_name : str
current : Dict[str, ColumnCorrelations]
reference : Optional[Dict[str, ColumnCorrelations]] = None
column_distribution_metric module
class ColumnDistributionMetric(column_name: str)
Bases: Metric
[ColumnDistributionMetricResult
]
Calculates distribution for the column
Attributes:
column_name : str
Methods:
calculate(data: InputData)
class ColumnDistributionMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: ColumnDistributionMetric)
render_json(obj: ColumnDistributionMetric)
class ColumnDistributionMetricResult(column_name: str, current: Distribution, reference: Optional[Distribution] = None)
Bases: object
Attributes:
column_name : str
current : Distribution
reference : Optional[Distribution] = None
column_quantile_metric module
class ColumnQuantileMetric(column_name: str, quantile: float)
Bases: Metric
[ColumnQuantileMetricResult
]
Calculates quantile with specified range
Attributes:
column_name : str
quantile : float
Methods:
calculate(data: InputData)
class ColumnQuantileMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: ColumnQuantileMetric)
render_json(obj: ColumnQuantileMetric)
class ColumnQuantileMetricResult(column_name: str, quantile: float, current: float, current_distribution: Distribution, reference: Optional[float] = None, reference_distribution: Optional[Distribution] = None)
Bases: object
Attributes:
column_name : str
current : float
current_distribution : Distribution
quantile : float
reference : Optional[float] = None
reference_distribution : Optional[Distribution] = None
column_value_list_metric module
class ColumnValueListMetric(column_name: str, values: Optional[list] = None)
Bases: Metric
[ColumnValueListMetricResult
]
Calculates count and shares of values in the predefined values list
Attributes:
column_name : str
values : Optional[list]
Methods:
calculate(data: InputData)
class ColumnValueListMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: ColumnValueListMetric)
render_json(obj: ColumnValueListMetric)
class ColumnValueListMetricResult(column_name: str, values: List[Any], current: ValueListStat, reference: Optional[ValueListStat] = None)
Bases: object
Attributes:
column_name : str
current : ValueListStat
reference : Optional[ValueListStat] = None
values : List[Any]
class ValueListStat(number_in_list: int, number_not_in_list: int, share_in_list: float, share_not_in_list: float, values_in_list: Dict[Any, int], values_not_in_list: Dict[Any, int], rows_count: int)
Bases: object
Attributes:
number_in_list : int
number_not_in_list : int
rows_count : int
share_in_list : float
share_not_in_list : float
values_in_list : Dict[Any, int]
values_not_in_list : Dict[Any, int]
column_value_range_metric module
class ColumnValueRangeMetric(column_name: str, left: Optional[Union[float, int]] = None, right: Optional[Union[float, int]] = None)
Bases: Metric
[ColumnValueRangeMetricResult
]
Calculates count and shares of values in the predefined values range
Attributes:
column_name : str
left : Optional[Union[float, int]]
right : Optional[Union[float, int]]
Methods:
calculate(data: InputData)
class ColumnValueRangeMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: ColumnValueRangeMetric)
render_json(obj: ColumnValueRangeMetric)
class ColumnValueRangeMetricResult(column_name: str, left: Union[float, int], right: Union[float, int], current: ValuesInRangeStat, current_distribution: Distribution, reference: Optional[ValuesInRangeStat] = None, reference_distribution: Optional[Distribution] = None)
Bases: object
Attributes:
column_name : str
current : ValuesInRangeStat
current_distribution : Distribution
left : Union[float, int]
reference : Optional[ValuesInRangeStat] = None
reference_distribution : Optional[Distribution] = None
right : Union[float, int]
class ValuesInRangeStat(number_in_range: int, number_not_in_range: int, share_in_range: float, share_not_in_range: float, number_of_values: int)
Bases: object
Attributes:
number_in_range : int
number_not_in_range : int
number_of_values : int
share_in_range : float
share_not_in_range : float
dataset_correlations_metric module
class CorrelationStats(target_prediction_correlation: Optional[float] = None, abs_max_target_features_correlation: Optional[float] = None, abs_max_prediction_features_correlation: Optional[float] = None, abs_max_correlation: Optional[float] = None, abs_max_features_correlation: Optional[float] = None)
Bases: object
Attributes:
abs_max_correlation : Optional[float] = None
abs_max_features_correlation : Optional[float] = None
abs_max_prediction_features_correlation : Optional[float] = None
abs_max_target_features_correlation : Optional[float] = None
target_prediction_correlation : Optional[float] = None
class DataQualityCorrelationMetricsRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: DatasetCorrelationsMetric)
render_json(obj: DatasetCorrelationsMetric)
class DatasetCorrelation(correlation: Dict[str, pandas.core.frame.DataFrame], stats: Dict[str, CorrelationStats])
Bases: object
Attributes:
correlation : Dict[str, DataFrame]
stats : Dict[str, CorrelationStats]
class DatasetCorrelationsMetric()
Bases: Metric
[DatasetCorrelationsMetricResult
]
Calculate different correlations with target, predictions and features
Methods:
calculate(data: InputData)
class DatasetCorrelationsMetricResult(current: DatasetCorrelation, reference: Optional[DatasetCorrelation])
Bases: object
Attributes:
current : DatasetCorrelation
reference : Optional[DatasetCorrelation]
stability_metric module
class DataQualityStabilityMetric()
Bases: Metric
[DataQualityStabilityMetricResult
]
Calculates stability by target and prediction
Methods:
calculate(data: InputData)
class DataQualityStabilityMetricRenderer(color_options: Optional[ColorOptions] = None)
Bases: MetricRenderer
Attributes:
color_options : ColorOptions
Methods:
render_html(obj: DataQualityStabilityMetric)
render_json(obj: DataQualityStabilityMetric)
class DataQualityStabilityMetricResult(number_not_stable_target: Optional[int] = None, number_not_stable_prediction: Optional[int] = None)
Bases: object
Attributes:
number_not_stable_prediction : Optional[int] = None
number_not_stable_target : Optional[int] = None
Last updated