from evidently.pipeline.column_mapping import ColumnMapping
column_mapping = ColumnMapping()
column_mapping.target = 'y' #'y' is the name of the column with the target function
column_mapping.prediction = 'pred' #'pred' is the name of the column(s) with model predictions
column_mapping.id = None #there is no ID column in the dataset
column_mapping.datetime = 'date' #'date' is the name of the column with datetime
column_mapping.numerical_features = ['temp', 'atemp', 'humidity'] #list of numerical features
column_mapping.categorical_features = ['season', 'holiday'] #list of categorical features